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ABSTRACT

The problem of solving the equation for uniform flow in an open channel

is reduced to that of evaluating three simple integrals. Practical methods of

computing these integrals are discussed.
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SOLVING THE EQUATIONS OF UNIFORM FLOW*

1. Introduction to the Problem

The equation for uniform flow in an open channel is

d S 0 -Sf [1
1 - cZ /Z2

where y is the stream depth, x is the distance along the channel bed, Z
C

is the section factor at critical flow and Z is the section factor of the actual

flow, and S is the slope of the stream bed; Sf is the energy grade line and

is given by

sf = Q2/K 2  [2]

where Q is the flowrate and K is the conveyance.

The section factor is given by (Ref. 1, Ch. 4)

- c yM [3]

where C and M are positive constants.z
The conveyance is given by (Ref. 1, Ch. 6)

K - Cky [4]

where Ck and N are positive constants.

This research was supported by a grant from the National Science Foundation.

**The reference for this equation and for the definitions and properties of the

section factor and the conveyance is the treatise of Chow (1) on open channel
hydraulics. The reference also gives the reader an excellent introduction to
the physics of the problem and discusses previously devised methods of
solving it.

.1.
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[2], [3], and [4]. can be substituted into [1] to yield

- 1 - (y /y)M dy [5]
S O - ( 2 -lyN

where the critical depth yc is given by

YC Zc 2- •Z Z/) 1/M "[5,]

In most applications [5] is integrated to give the distance 8 between two

depths yl and y.:

yy/Y
= I, -(yc/y)Md[6

S o(QZtC)y.N dy y2 :>• Yj 6]

The only mathematical consideration to be observed in taking the integral

of [6] is that no zero of the denominator of the integrand be permitted to occur

over the range (y, y'2 )* [6] can be given the more convenient form

8 = B(M, N;.So, YcP Q 2/ck; Y2 ) - B(M, N; So, ycl Q2/Ck; Yl [7]

where
I - (yc/y) M

B(M, N; So, op Q#2/Ck; Y) = So~i 2 ;Sk,. dy [7'1

It is convenient to study the function B

*Physically, this would correspond to prohibiting the flow profile in a uniform

channel from smoothly crossing the normal depth. This is in accord with
experimental fact.
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2. The Reduction of B(M, N; So, Yc' Q2/Ck; y) to

Its Four Normal Forms

To evaluate the B-function it is convenient to divide the fifteen

hydraulic profiles into five classes.

Class I: M2, M3, S3, C3.

n > y 2  where the normal depth yn is

given by Ln J
Q - [8]

Yn k' )

The substitution of [8] into [7'] yields

BI (y) = -Co. $ - (yn/N,, dy [9]
0 <y<yn<cxO

which, subject to the substitution

= (yn/y)-N [10]

becomes I/N 1-MYn k 1x (yc/n) -

B1 (Y) = - c dX1  [11]•i

0

Class II: M9 S1, SZ, Cl. r-
In this class S0> 0 and n < Y where yn is given by [81.

> 0 nd <y n

The substitution

= (yn/y)N [12]

I
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reduces [9] to

1+N M M-1=NYn . X 2. (yc/Yn )M)2 N

B(y) = " - )L $ 2 dX)2  [13]
0 2

o> y> yn> 0.

Class II: H2, H3.

In this class SO = 0. Thus [7'] reduces to

BIIy) = -7 1 [y" N - yM yN-M]dy 0< y < ,o [14]
(Q /Ck)

Class IV: AZ, A3.

In this class S < 0 and [7'] reduces to0

Bv(Y)= - 1 c''a' a dy [15]
0 + (ya

where the adverse depth ya is given by

Ya Q2 1/N [15']

Suppose ya/y >, 1 . Define

x` 3 (Y a Y)'N [16]

Then

(Ya y)-N 1/N I M

(Y) Ya x 3 = (yc/ya)M X)3
B IV S73 = I + x-3 dX 3  [17]

0 < y,< ya < c
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Suppose ya /y < 1 . Define

4 (ya/y) N [18]

Then (ylp -N M-1-N

BTvenYa X/v .4T. (ya/Ya)MX4
BIV(y) = BTV(Ya) "+ X dX4  [19]

Ya Y< y<

Class V: HI, Al; C2.

HI and AI are not physically realizable (Ref. 1, Ch. 9). C2 is the

trivial case Yc = y = Yn ; it is unstable.

The most interesting fact about the integrals thus.far presented is

that they can be simply expressed in terms of three fundamental functions,

the backwater integrals:

* (1)(z) = dz 0< z < 1 (20a]
(z)=j ~ -1 -- d Z'~l[Za

*() (z)= zT- I dz 0 < Z < O [20b]

'VY
,(3)() C z'V- 1
(3)= (z) dz 0 < z < [ZOc]

One can thus reduce the B's to

1 n 1i) (1iN (yc/yn)M 'cn (-1)-+N (cI[l

S (Y/y)N [21]
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B11(Y) Yn - qkB" (aL2 - (yc/~Y )M a (1) [ 22]

a.2 = (yn/y) N [22']

B -"L )((2) ( 1 NM (8 ) ((2) [23]B~()(Q2/Ck) _(9N c NMl('

a 3 y [23']

ya Y Ya 19 N ()4) - (yc/Ya)M ( Ig.+N (a4) [24]
a lrBIV( =lI"9° I+ -+N(L4[4

o

cl4 = (ya/y)N [24']

BIv(ya) _ •)- M (4M(321 [24"]

Ya >'yI 3 %)(a

In the next section methods of evaluating the (8(1) (z) will be discussed.

3. Evaluation of the Backwater Integrals

The evaluation of the backwater integrals for all values of 7 presents

no intrinsic difficulty. However, it can become rather involved, especially

for y = -m(m = 0, 1, 2, ... ), and presents practical problems in computation.

For the purposes of this study it is sufficient, for Q (() and (9(3) to consider
1 + N 1 =M+N 1

only those portions of the 7-axis covered by 1-M+N - 1 14
and M -1 orfor (92) by I+N and I-M+N. One can first note that
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for an open channel it generally happens that (1, p. 132) 2 .< N < 6;

hence 1 1
< -- - 1/6 [25a]

14-N
3/2 o 1+ > 7/6 [25b]

Similarly, using the values of M calculated by Chow (1, p. 67), one has

1 > M 1 > [/2 [25c]

0< 1-M+N < 1/2 [25]

Thus, for the evaluation of (8)B and (g(3) , the ranges of y which are of

interest are

"1 4 3,<0 [26a]

0 < 1.4 3/2 [26b]

For the evaluation of (8(2) the y-range of interest is
'V

0 < y < 7 [27]

The restrictions placed upon -y by [26] and [27] preclude the

existence of logarithmic terms in any of the (S()). Hence, it isc
n convenient

to expand the integrands of [20a] and [20c] in infinite series and, uniform

continuity being seen to obtain, to integrate these series term by term:

( ) OD

3, (z) (+ n 1 n+', [28]
'V - n + y

n=o
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It happens that the series in [28] can be summed at once (2) to yield

(y3 (z) = - F(, 'y; 7y+1; + z) [29]

where F is an ordinary hypergeometric function. This fact, however, is

of negligible value computationally and it is better to sum [i8] by less direct

methods.

[28] can be reduced at once to
1

(3) ' 1(V (z)= z +S +( [30]

where -
CO

S (+ z) + )nzn [30']

n=

By utilizing the relation (3)
00

Li (+ z)= (-+n zn [31]
P- nP

n=l

where IA is thepolylogarithm function (3) of order p , it in possible top

express [30'] as

K 0

S (+z) ,Y ()k-1 Li (+)+(.)K (+)n zn [32]k= k(I z) + n K(n +,y)

kI n
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The Eq. [32] can itself be simplified by noting that

00 z 00

n : 1 42...z n z'5 ( ± 1)' z)+y .
n K(n+y) o nK

z

Y S (z)T' LiK (+ z') dz' [33]

0
Let a polynomial approximation to LiK be formed:

3

L K(+ z) Kc(+)Z + Rf(z) [34]K (+ zKJ- K " J )[4

j=l

Then

S (+.z) > o() z• +z $(z')l R~ (z')dz' K =0 [35a]
j=l 0

K-I J

-~ ~ Q'()1Li z) +(-'Y) K

k=1 j=1

z

0

The choice of suitable K and J is not simple, since a balance must

be drawn between the difficulties of computing the polylogarithrn functions

as opposed to those of summing series. In addition, ST(+z) has a

singularity at z = 1 which adversely affects the convergence of the series

which obtain for K >, 0 and makes it difficult to obtain suitable approximating

polynomials.
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To insure that the integrals in [33] were well behaved it was decided

Lik(+ z) M
to approximate -I-+.) and then to represent KRJ- (z') by

KRJL (z') = z' KEL± (z+) 36]

K+) JdK(+Z
Ki -(-+,) [6

where KEI )(z) is the error in . If then, the maximum value of

IKEj- (+) (z) I over (0, z) is KMJ(-)(z) the error terms are, in absolute value,

less than 

M L±kZ)
'Y+l0

for [35a] and less than [37 b]

STV KMJ -z) [37b]

for [35b].

The construction of the polynomial approximations is discussed in

detail in Appendix I; it is sufficient to note the results here. For integrals

of the third kind K = I was found to be adequate:

1M9(') < 5 x 10"7 [38.0]

91c -1.0000 0000 [38: 1]1

91c 0.4999 8946 [38.2]

9 c.) = -0.3330 7718 [38.3]
13

Sc4(-) 0.2476 3567 [38.4]
1 0
9l 5 'c -0.1883 5208 [38. 5]
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l) = 0.. 1315 6190 (38.6]
1 6-
9c () =-0.0729 0260 [38.7]

9c:)= 0.0265 6504 (38.8]1 8

9c(") = -0.0045 6742 [38.9]

Thus,

()()= Zy + 9 cij+ O1 X 10o-7 x T [39]

For the integrals of the second kind
( 2)) W 1 z'y [40]

For integrals of the first kind, unfortunately, it proved necessary to go to

K = 4 to obtain a polynomial approximation which converged with sufficient

rapidity:

M(+) < 7x10 7 x(1 -In (1 - z)) [41.0]
4 9

(This odd weighting was chosen so that the relative accuracy of the

approximation would not be greater than necessary near the singularity of

Li(z) I n(l-z) at z = 1. )

4c = 1.0000 0046 [41.1]

SdM)= 0.0624 1793 [41.2]4 2

4c+ = 0.0143 7767 [41.3]

9 ( =+) -0.0150 2213 [41.4]4 4
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9 c(M)= 0.0873 5126 [41. 5]4 5

9 c(+) -0.2087 8801 [41. 6]4 6

9 c(+) 0.2831 2643 [41. 7]4 7

9 c(+) -0. 1984 0826 [41.8]4 8

9 (+) 0.0572 7062 [41.9]4 c9 =

Hence,

()(z) = z' + Lil (z) - yLi 2(z) + ZY Li3 (z)

9
4 J(3+'Y z

j=l

+C'(7x10"7x- 1-3 x z x (1- fn(1-z)))- [42]

Since the polylogarithms have been extensively tabulatecd4), the

forms [39], [40], and [42] provide a convenient way of computing the 8 (z)
-y

by hand. The attainable accuracy will, of course, vary with the choice of I ,

y , and z: it is believed that if eight figures are carried, the relative error

in the answer will normally be less than 1 part in 105

The Eqs. [39] and [40] are well suited to use with digital computers.

[42] is not quite as convenient for machine use since it requires the computation

of three polylogarithrn functions which can in turn necessitate the computation
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of five logarithms plus the summation of two slowly convergent series:

it is advisable to compute 0 (3) (z) directly from [30] when the series for

S (z) converges with suitable rapidity. From [30']

00 n
S y(Z) n + y /Z~. <1y- / [43]

To determine the z-range over which [43] is useful it is convenient to

rewrite it as
N n

(Z) z + TN (Z) [44]
n= I

where the truncation error TN (z) is given by

OD n
TN (z) [44']

n=N+l

An application of Cauchy's integral method to[44']yields

ITN(Z)I I IzIN Iz N t dt [45]
NI(N-l1)+n " zN (II-+dt []

n=l o

which, subject to the substitutions

I-I = e'P P > 0  [46a]

(N-I) = X [46b]
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becomes

ITNWz)15.CNp dt 1 [47]
0 >

Hence,
H TN(z) I < ep P i (-Xp) [48]

where

ei (w)= $ dt [48']
-Co

Thus, the relative error 6RN(z) in the sum is, for z >,0 , bounded by

161 4 I (- Xp) 1 [49]

Taking 6RN(Z)I < 5 x 10- 8 (Xp " 15),one sees that N = 64 will suffice for

z < 0. 75. Hence, for use on digital machines it is suggested that the formula

64 0 < z <3/4
(1)(z) = z Y zn 1 [50](• ~n+,y -T•• <32[0

n=o 7 0

be employed when possible.

Rather than use the methods outlined above to produce extensive

tables of the ( 1) (z), which would, in this era of digital machinery, be
t o

obsolescent from birth, the equations [39], [40], [42], and [50] were

combined to produce a single subprogram for the IBM 7090 computer.

Copies of this subprogram can be obtained by writing the author; a complete

description of it is given in Appendix II.
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4. Conclusions

It was shown that the problem of integrating the differential equation

governing the uniform flow of liquid in an open channel can be reduced to the

evaluation of three transcendental functions. This latter problem was shown to

reduce to that of computing certain simple algebraic quantities and calculating

various low-order polylogarithm functions.

No tables of backwater integrals were presented, since it was concluded

that - in view of the extensive and rapidly growing use of digital computers -

such tables would not be of widespread interest, Instead, a subprogram

was written for use on an IBM 7090. With the aid of this subprogram the

engineer can rapidly construct a program to calculate whatever flow profile

he desires.

An area where considerable future progress can be made is that of the

derivation of approximating polynomials for the several polylogarithm functions.

A not unrealizable goal should be the polynomial approximation of Li (z)

which would reduce the evaluation of (S (1) (z) to the summation of a rather

long series and the computation of the logarithm.
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APPENDIX I

Construction of the Polynomial Approximations

The problem to be dealt with here is that of properly approximating

certain transcendental functions. It was solved as follows.

Let f (x) be a function which is to be approximated by a polynomial

P3 (x) over an interval (0, 1). Let

DJ(x) = f(x) - PJ(x) [A-1]

Further, let g (x) be some positive definite function over (0, 1), and let

Zj(x) = DJ(x)/g(x) [A-2]

be the error relative to the normalizing function g (x). The problem is to
adjust the coefficients a. of

J
3

P 3 (x) = : ajxi [A-3]
j=0

so that Z (x) falls within some desired bounds.

The method used is based uponthat of Spitzbart and Macon (4) Let

ZS(x) be specified over a setfxp} of S+2 distinct points as

Z S(x) x Xpd [A-4]

where the % p have been specified and d is some constant to be determined.p

Then

f(x ) - p) d glxp [A-5]p 3 ( pd ~
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d, a measure of the goodness of fit, and the coefficients a. are determinedJ

by solving the system [A-5] . Let

a

al

A- [A-6a]

d

f(x 0)

F = [A-6b]

f'lxJ+ 1)

x g-(Xo) Xo

.W 1x 1  xJ g(x 1 ) X1 [A-6c]

1 xJ+1  Xj+ 1 gl(xJ+l) X3+1

With this abbreviated notation [A- 5] can be rewritten as

WA = F [A-7]

[A-7] will have a non-trivial solution, i. e., W- will exist, if and only if

no polynomial of degree less than J+l passes through the points
(X p, Xp g(X p) (p = 0, 1, 2, ... , J + I) .

p p p

For the approximations desired here this condition was met by setting

X = (- 1 )p (p = 0, 1, ... , J) [A-8a]p



p-2
io-•

Idl

10-4

=3

p=4

I I , ,, 1 ,

0 2 4 6 8 10 12

FIG. POLYNOMIAL APPROXIMATION OF Lip(Z)/Z.
ERROR CRITERION Idl AS A FUNCTION OF p AND
THE ORDER OF APPROXIMATION J.
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and

1= x [A-8b]

Of course, the formalism leading to [A-7] does not really solve the

approximation problem completely, since it does not specify either g (x)

or the set x . The choice of g(x) was left arbitrary and was varied from

one f (x) to another. The IXp3 problem was solved by requiring the extremals

of Zj(x) to coincide with x p . For monotone f (x) this leads to the

danger of having only J + 1 extremals, and in this case x j+ 1 was chosen to

be 1, xj being unchanged if x = I wais an extremal, or being placed between

x = X. 1 and x = 1 if x = 1 was an ext.-emal. This choice of xNt meant in

practice that the set fx was found iteratively: a set 1xp(0 ) was chosen, the

a found, and a curve of ZN(x) computed; from this ZN a new set of

extremals, i.e., Vxp1, was found and the process repeated; the iteration

was continued in this manner until convergence resulted or until ZN (x)

and/or d became so small that computing error rendered further iteration

unprofitable. This method of selecting the X p and the (xPJ in effect adjusted

DN (x) so that its extremals were of alternating sign and so that I g (x)d I

was an envelop for it.

A FORTRAN program embodying these features was written and run

on the IBM 7090 computer at the Harvard University Computing Center. It

was found that the W-matrices tended to be fairly poorly conditioned with the

result that it was difficult to procure solutions for [A-7] when J exceeded ten.
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Since 0()(z) is singular at z = 1, the weighting function

g(x) = I - In (l-z) [A-9]

was chosen, and approximations to Lip (z)/z for various J and p = 2, 3, 4 were

generated. The results of these calculations are summarized in Fig. I

The singularity at z = 1 in the pth derivative of Lip (z) is seen to affect

powerfully the goodness of fit. The case p = 4, J = 8 was chosen as adequate

and the results presented in [41] were adopted. With an approximating program

of higher accuracy it seems likely that sufficiently accurate results could be

obtained with p = 3, J > 16 . It seems probable that the obtaining of a good

approximation for p = 2 will require a quite large value of J.

The fitting of ) (z) was much simpler, since it and its derivatives

possess no singularity over (0, 1). In this case a weight function equal

approximately to unity was chosen and the results quoted in [38] obtained

forp= 1, J= 8

0 1
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APPENDIX II

A Program for Computing the Backwater Integrals

A FAP coded FORTRAN type subprogram, named BKW, was written

to compute the backwater integrals. It was subsequently debugged and tested

on the IBM 7090 at the Harvard University Computing Center. Binary decks

for this routine may be obtained by writing the author; these decks also

contain the special subroutines AGLOG, AGPWR, and AGTLG called by BKW.

A listing of BKW is presented in Figs. IIa through lie. The program

for computing (9 (1)(z) is seen to be divided roughly into five major sub-

sections. In the first subsection the program decides which of the three

integrals (I = 1, 2, 3) is to be evaluated and transfers control to the appropriate

subsection. There is a separate subsection (BI, B2, or B3) for each value

of I . Finally, there is a subsection (ERR and/or RET) which controls returns

to the calling program.

Bl. This subsection first examines z: for z . 0 or z i 1, an error

return (transfer to ERR) is specified, for 0 < z < 0. 75, an evaluation by the

series [50] (transfer to.SERl) is specified; for 0.75 < z < 1.00 , an

evaluation by means of EE1. [42] is specified. The first step in the evaluation

by either [50] or [42] is the examination of y : if the -y specified equals a

value held in storage (zero if this is the first pass through SERI or the

corresponding routine for large z , otherwise the value of y on the last
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pass through the appropriate routine), the values of 1 9, (or),Lc

are known to be computed and held in storage already so that Q1)()0) can

be computed at once from [42] (or [50] ) and control transferred to RET; if y

does not agree with the value held in storage, it is checked to make sure that

it is within the prescribed range of values and, assuming that it passes this

test (transfer to, ERR otherwise), the appropriate constants are calculated and

the integral evaluated as before. In the course of these calculations various

special subroutines are utilized: AGLOG, a 27 bit accuracy, floating point

logarithm routine; AGPWR, a 26 bit accuracy, floating point power routine;

AGDLG, a routine for Li 2 (z); AGTLG, a routine for Li 3 (z).
B2. This subsection first obtains y and z and tests to see that they

lie within the allowed ranges. Failure of this test causes program control to

be transferred toERR. Success of this test results in the evaluation of

0 (2)(z) directly from [40]; control is then transferred to RET.

B3. This subsection is roughly similar to that for S(21)(z), except

that the integrals for all allowable z are computed from the same formula.

First, z is checked for range. Then - is checked, and, if necessary, the

constants c9C (-) are recomputed. Finally, (R3) (z)is computed from
[39], a[39], and control I. transferred to RET.
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ERR and RET. ERR is an error routine which clears the accumulator

and turns on sense light 4; it then transfers control to RET. RET resets the

three index registers and returns control to the calling program.

USAGE. The appropriate calling sequence in FAP is

A TSX BKW, 4

TSX L

TSX GAMMA

TSX Z

(1)The normal return is to A+4 within ( T (z) in the accumulator; in case of an

error in the range of z or y,, return is toA+4 but the accumulator will be

clear and sense light 4 will be on. (Note that L must be a FORTRAN integer

and that GAMMA and Z must be FORTRAN floating point numbers.) The

appropriate calling sequence in FORTRAN is

Y = BKW(L, GAMMA, Z)

where Y is the value of the desired integral.

TIMING. This is quite variable. It runs from about 10 ms for the

worst cases of l)(z) down to 2 +ms for Q (3)(z) and 2 ms for (2(z).
|y 7

ACCURACY. Error is expected to be less than 1 part in 105 in most

cases. For 1(1)(z) (0.75 < z < 1.00) it is normally less than 1 part in 106.
7e



ENTRY BKW
8KW SXD *-2o4

SXD ERAS+191 SAVE INDICES
SXD ERAS+292
SXD ERAS+4,4
CLA* 1.4 GET L
CAS CNST
TRA *+2
TRA 81 L = 1
CAS CNST+l
TRA *+2
TRA B2 L = 2
CAS CNST+2
TRA *+2
TRA B3 L = 3
TRA ERR

81 CLA* 2,4 GET AND SAVE GAMMA
STO ERAS
CLA* 394 GET Z
TMI ERR Z NEGATIVE
TZE ERR Z ZERO
CAS CNST+3
TRA ERR Z TOO LARGE
TTR *-I

STO Z Z OK. SAVE
CAS CNST+4
TRA *+6 Z GT 0.75
TTR *+1
TSX SER14
HTR ERAS
HTR Z
TRA RET
CLA ERAS
CAS G1
TTR *+2
TRA *+2 OLD CONSTANTS SUFFICE
TRA CON1 GET NEW CONSTANTS FOR ASY'4P EVAL
CLA CNST+3 6EGIN ASYMPTOTIC EVALUATION
FDP G1
STO TOT
CLA CNST+3
FSR Z

STO ERAS
TSX $AGLOG,4
HTR FRAS
HTR ERAS
CHS
FAD TOT
STO TOT LIl INCLUDED
TSX $AGDLG,4
HTR Z

XCA
FMP G1
CHS
FAD TOT
STO TOT L12 INCLUDED
TSX SAGTLG*4
HTR Z

FIG. Ia LISTING OF BKW (PAGE I OF 5)



XCA
FMP GI
XCA
FMP Gi
FAD TOT
STO TOT L13 INCLUDED
AXT 0,1 START APPROXIMATING SERIES
PXD 0oo
FAD S1+8,1
XCA
FMP Z
TXI *+It41,1
TXL *-49198
XCA
FMrP Gi
XCA
FMP Gi
XCA
FIMP Gt
CHS
FAD TOT
STO TOT COMPLETE SERIES
TSX $AGPWR94
HTR Z
HTR Gi
XCA
FMP TOT BI COMPLETE
TRA RET

SERI SXD ERAS+3,4 SAVE XR(4)
CLA* 2t4
STO Z SAVE Z
CLA* 1t4 GET GAMMA
CAS G1S
TTR *+2
TRA *+2 OLD CONSTANTS SUFFICE
TRA CONIS NEW CONSTANTS NECESSARY
AXT 094 6EGIN SERIES SUMMATION
PXD 0,0
FA, SlS+64t4
XCA
FMP Z
TXI *+1i491
TXL *-494o63
FAD SiS
STO ERAS
TSX SAGPWR94
HTR Z
HTR GIS
XCA
FMP ERAS
LXD ERAS+3#4
TRA 3,4

CONI TZE ERR CHECK RANGE OF GAMMA
CAS CNST+5
TRA *+3
TTR *-1
TRA ERR
CAS CNST+6
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TRA ERRITTR +
STO Gl SAVE NEW VALUE OF GA~i.'Al

AXT 091 SET UP NEW CONSTANTS
CLA CNST+7
STO ERAS+5
CLA ERAS+5
FAD 61
STO ERAS+6
CLA ERAS+5
FDP ERAS+6
FMP C+891
STO 51+891
CLA ERAS+5
FSB CNST+3
STO ERAS+5
TXI *4.19191
TXL *-11,108
TRA 81+21 RETURN TO 81 EVALUATION

CONiS TZE ERR CHECK RANGE OF GAMMA
CAS CNST+5
TRA 3

TTR I-
TRA ERR
CAS CNST+6
TRA ERR
TTR *+.1
STO G1S SAVE NEW VALUE OF GAMiMA
AXT J94 SET UP NEW CONSTANTS

CLA CNST+d
STO ERAS+5
CLA ERAS+5
FAD G15
STO ERAS+6
CLA CNST+3
FDP ERAS+6
STQ S15+64,4
CLA ERAS+5
FSB CNST4.3
STO ERAS+5
TXI *+l4t14,
TXL *-1094964
TRA SER1+8 RETURN: TO SERi

-ERR PSE 1011 TURN ON SENSE LIGHT 4
PXD 0 9 t CLEAR AC
TRA RrT PREPAPF TO EXIT

RET L Xr) ERAS+1,1

LXD EiRAS+292

LXD ERA5+494V
T RA 494 GO 3ACK TO MPI ll PP'DGR441

62 03~ ', CTA I N A 'A\uCCKI.cE

T I

CAs CS T 9

TT.3 *4- 1

.9 4 ?4 CBTAIN' Z A'ND CHECK PAN--,
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TVI ERR
TZE ERR
STO Z
TSX $AGPWR94 Z**GAMMA
HTR Z
HTR G2

FDP G2
XCA
TRA RET

13 CLA* 294 GET GAMMA
CAS G3
TRA *+2
TRA *+2 OLD CONSTANTS SUFFICE
TRA CON3 NEW CONSTANTS NEEDED
CLA* 394 GET AND TEST Z
TMI ERR
TZE ERR
CAS CNST+3
TRA ERR
TTR *+1
STO Z
AXT f,1 SUM 1•Pl=
PXD 0,0
FAD S3+891
XCA
FMP Z
TXI *+1,1,1
TXL *-491,8
STO ERAS
CLA CNST+3
FDP G3
XCA
FAD ERAS
STO ERAS FIND 93
TSX SAGPWR*4
HTR Z
HTR G3
XCA
Fv;P ERAS

TRA RET
CON3 TAE ERR TEST GMMA

CAS CNST+5
TRA *+3
TTR *-I

TRA ERR
CAS CNST+6
TRA ERR
TTR 4+l
STO G3 GAMMA OK
AXT 0,2 SET UP SERIES REVISION
CLA CNST+7
STO ERAS-+6
CLA ERAS+6 REVI$E
FAD G3
STO ER'AS
CLA D+892
FDP ERAS
FMP ERAS+6
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STO S3+892
CLA ERAS+6
FS, CN ST +3
ST ERAS+6
TX[ *l+t2,l
TXL *-11o298
TR• 933+5

CNST PZ1 3,0,1
PZE 0,0,2
PZE 19093
DEC 1.00
DEC 0.75
DEC -0.50
DEC 1.50
DEC 9.00
DEC 64.00
DEC 7.00

C DEC +0.100000046E+01 L14 CONSTANTS
DEC +0.624179326E-01
DEC +0014377b6b6E-01
DEC -0*150221251E-01
DEC +0.873512559E-01
DEC -0:208788007E-00
DEC +0.283126429E-00
DEC -0*198408261E-00
DEC +0.572106185E-01

D DEC -G.9999999V3E+00 LIl CONSTANTS
DEC +0499989465E-00
DEC -0.333077177E-00
OLC +0.247635670E-00
DEC -u.186352078E-00
DEC +0*131561905E-U0
DEC -u*729u259ý0E-O1
DEC +09265650421E-01
DEC -0*456741825E-02

ERAS BSS 7
Z aSS 1
Gl BSS 1
GIS BSS 1
G2 BSS 1
G3 BSS 1
TOT BSS 1
Si BSS 9
SlS BSS 65
S3 BSS 9

END
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TR400 -23-

For (3) (z) it is normally less than 2 parts in 107 and often less than 2 parts
'V

in 108. For ( (1)(z) (0.00 < z .< 0.75) the error is normally confined to the

eighth figure. The error in 6 (2)(z) in normally less than 2 parts in 108

Regions of high relative error can be expected in (01)(z) for y < 0 and
.(1) 

ly
values of z for which 9 (z) -0 ; however, even here several good decimal

places will normally be available.
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